Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 320(6): E1053-E1067, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843280

RESUMO

Ketogenic diets (KDs) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 wk, whereas controls (Con) received a low-fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). After 3 wk on the diet, mice began treadmill training 5 days/wk, 60 min/day for 3 wks. The NPKD increased body weight and fat mass, whereas ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, whereas the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α and markers of mitochondrial fission/fusion. Pyruvate oxidative capacity was unchanged by either intervention, whereas ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable changes as the NPKD and ExTr interventions both enhanced mitochondrial and peroxisomal lipid oxidation and many adaptations were additive or synergistic. Overall, these results suggest that a combination of a NPKD and ExTr induces additive and/or synergistic adaptations in skeletal muscle oxidative capacity.NEW & NOTEWORTHY A ketogenic diet with normal protein content (NPKD) increases body weight and fat mass, increases intramuscular triglyceride storage, and upregulates pathways related to protein metabolism. In combination with exercise training, a NPKD induces additive and/or synergistic activation of AMPK, PGC-1α, mitochondrial fission/fusion genes, mitochondrial fatty acid oxidation, and peroxisomal adaptations in skeletal muscle. Collectively, results from this study provide mechanistic insight into adaptations in skeletal muscle relevant to keto-adaptation.


Assuntos
Dieta Cetogênica , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Peroxissomos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Oxirredução , Estresse Oxidativo/fisiologia
2.
Med Sci Sports Exerc ; 52(1): 37-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389908

RESUMO

PURPOSE: Studies suggest ketogenic diets (KD) produce favorable outcomes (health and exercise performance); however, most rodent studies have used a low-protein KD, which does not reflect the normal- to high-protein KD used by humans. Liver has an important role in ketoadaptation due to its involvement in gluconeogenesis and ketogenesis. This study was designed to test the hypothesis that exercise training (ExTr) while consuming a normal-protein KD (NPKD) would induce additive/synergistic responses in liver metabolic pathways. METHODS: Lean, healthy male C57BL/6J mice were fed a low-fat control diet (15.9% kcal protein, 11.9% kcal fat, 72.2% kcal carbohydrate) or carbohydrate-deficient NPKD (16.1% protein, 83.9% kcal fat) for 6 wk. After 3 wk on the diet, half were subjected to 3-wk treadmill ExTr (5 d·wk, 60 min·d, moderate-vigorous intensity). Upon conclusion, metabolic and endocrine outcomes related to substrate metabolism were tested in liver and pancreas. RESULTS: NPKD-fed mice had higher circulating ß-hydroxybutyrate and maintained glucose at rest and during exercise. Liver of NPKD-fed mice had lower pyruvate utilization and greater ketogenic potential as evidenced by higher oxidative rates to catabolize lipids (mitochondrial and peroxisomal) and ketogenic amino acids (leucine). ExTr had higher expression of the gluconeogenic gene, Pck1, but lower hepatic glycogen, pyruvate oxidation, incomplete fat oxidation, and total pancreas area. Interaction effects between the NPKD and ExTr were observed for intrahepatic triglycerides, as well as genes involved in gluconeogenesis, ketogenesis, mitochondrial fat oxidation, and peroxisomal markers; however, none were additive/synergistic. Rather, in each instance the interaction effects showed the NPKD and ExTr opposed each other. CONCLUSIONS: An NPKD and an ExTr independently induce shifts in hepatic metabolic pathways, but changes do not seem to be additive/synergistic in healthy mice.


Assuntos
Dieta Cetogênica , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Ácido 3-Hidroxibutírico/sangue , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Cetonas/metabolismo , Leucina/metabolismo , Metabolismo dos Lipídeos , Glicogênio Hepático/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Oxirredução , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Peroxissomos/metabolismo , Triglicerídeos/metabolismo
3.
Mol Nutr Food Res ; 61(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234399

RESUMO

SCOPE: To determine if whole-grain (WG) flour with resistant starch (RS) will produce greater fermentation than isolated RS in obese Zucker Diabetic Fatty (ZDF) rats, and whether greater fermentation results in different microbiota, reduced abdominal fat, and increased insulin sensitivity. METHODS AND RESULTS: This study utilized four groups fed diets made with either isolated digestible control starch, WG control flour (6.9% RS), isolated RS-rich corn starch (25% RS), or WG corn flour (25% RS). ZDF rats fermented RS and RS-rich WG flour to greatest extent among groups. High-RS groups had increased serum glucagon-like peptide 1 (GLP-1) active. Feeding isolated RS showed greater Bacteroidetes to Firmicutes phyla among groups, and rats consuming low RS diets possessed more bacteria in Lactobacillus genus. However, no differences in abdominal fat were observed, but rats with isolated RS had greatest insulin sensitivity among groups. CONCLUSIONS: Data demonstrated ZDF rats (i) possess a microbiota that fermented RS, and (ii) WG high-RS fermented better than purified RS. However, fermentation and microbiota changes did not translate into reduced abdominal fat. The defective leptin receptor may limit ZDF rats from responding to increased GLP-1 and different microbiota for reducing abdominal fat, but did not prevent improved insulin sensitivity.


Assuntos
Microbioma Gastrointestinal , Amido/metabolismo , Grãos Integrais , Gordura Abdominal , Animais , Peso Corporal , Ceco/metabolismo , Digestão , Fermentação , Microbioma Gastrointestinal/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Masculino , Obesidade/metabolismo , Obesidade/microbiologia , Ratos Zucker , Receptores para Leptina/metabolismo
4.
J Mammary Gland Biol Neoplasia ; 20(3-4): 149-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26227402

RESUMO

Breast milk is a multifunctional biofluid that provides nutrients along with highly diverse non-nutritive bioactive components such as antibodies, glycans, bacteria, and immunomodulatory proteins. Research over the past decade has confirmed the essential role of breast milk bioactives in the establishment a healthy intestinal microbiota within the infant. The intestinal microbiota of an exclusively breastfed baby is dominated by several species of Bifidobacteria - the most influential member of which is Bifidobacterium longum subspecies infantis (B. infantis) - and is referred to as the milk-oriented microbiome (MOM). MOM is associated with reduced risk of infection in infancy as well as a reduced risk of certain chronic illnesses in adulthood. Establishment and persistence of MOM is dependent on the selective digestion of complex sugar structures in breast milk that are otherwise indigestible to the infant by B. infantis and its relatives. This review focuses primarily on the influence of breast milk glycans and glycosylated proteins on the development of the intestinal microbiome, and how maternal phenotype may influence the development of MOM providing a framework to understand how variation in diet shapes a protective intestinal microbiome.


Assuntos
Bifidobacterium , Aleitamento Materno , Dieta , Intestinos/microbiologia , Microbiota , Leite Humano/metabolismo , Humanos , Imunoglobulinas , Leite Humano/imunologia , Polissacarídeos/metabolismo
5.
PLoS One ; 10(5): e0126177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938560

RESUMO

Sitagliptin (SG) increases serum GLP-1 (Glucagon-like peptide-1) through inhibition of the hormone degradation. Resistant starch (RS) induces GLP-1 expression by stimulating L-cells in the intestine. Sitagliptin and resistant starch may have a synergistic interaction in the induction of GLP-1. This possibility was tested in current study in a mouse model of type 2 diabetes. Hyperglycemia was induced in the diet-induced obese mice by a signal injection of streptozotocin (STZ). Sitagliptin (0.4g/100g diet) was tested in the mice (n = 55) with dietary RS (HAM-RS2) at three dosages (0, 15, or 28g/100g diet). Energy and glucose metabolism were monitored in the evaluation of synergistic activity, and GLP-1 activity was determined in the GLP-1 receptor knockout (KO) mice. In the wild type mice, body weight and adiposity were reduced by sitagliptin, which was enhanced by RS (28g). Serum GLP-1 was induced and energy expenditure was enhanced by sitagliptin. Fasting glucose, insulin, and leptin levels were decreased by sitagliptin. The sitagliptin effects were lost in the KO mice (n = 25) although induction of serum GLP-1 by sitagliptin was even stronger in KO mice. The data suggests that sitagliptin is able to reduce adiposity and insulin resistance through induction of energy expenditure. The effect of sitagliptin is partially enhanced by RS. GLP-1 receptor may regulate serum GLP-1 by facilitating the hormone clearance.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico , Adiposidade/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Obesity (Silver Spring) ; 22(2): 344-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23630079

RESUMO

OBJECTIVE: Obesity is a health concern. Resistant starch (RS) type 2 from high-amylose maize (HAM-RS2) and dietary sodium butyrate (SB) reduce abdominal fat in rodents. RS treatment is associated with increased gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), but it is not known if SB increases these hormones. DESIGN AND METHODS: This was investigated in a 2 × 2 rat study with HAM-RS2 (0 or 28% weight) and dietary sodium butyrate (0 and 3.2%) resulting in isocaloric treatments: energy control (EC), sodium butyrate (SB), HAM-RS2 (RS), and the combination (SBRS). RESULTS: RS and SB reduced abdominal fat and the combination reduced abdominal fat compared to SB and RS. RS was associated with increased fermentation in the cecum. Serum PYY and GLP-1 total were increased with RS treatment. RS treatment was associated with increased cecal butyrate produced from fermentation of RS, but there was no cecal increase for dietary SB. CONCLUSIONS: SB after its absorption into the blood appears to not affect production of PYY and GLP-1, while butyrate from fermentation in the cecum promotes increased PYY and GLP-1. Future studies with lower doses of RS and SB are warranted and the combination may be beneficial for human health.


Assuntos
Gordura Abdominal/patologia , Fármacos Antiobesidade/uso terapêutico , Ácido Butírico/uso terapêutico , Obesidade/prevenção & controle , Prebióticos , Amido/uso terapêutico , Zea mays/química , Adiposidade , Amilose/genética , Amilose/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Ácido Butírico/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Fermentação , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Masculino , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/patologia , Peptídeo YY/agonistas , Peptídeo YY/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/enzimologia , Ratos , Ratos Sprague-Dawley , Sementes/química , Sementes/enzimologia , Sementes/genética , Amido/metabolismo , Zea mays/enzimologia , Zea mays/genética
7.
Obesity (Silver Spring) ; 21(11): 2350-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23512798

RESUMO

OBJECTIVE: The effects of type 2 resistant starch from high-amylose maize (HAM-RS2) in rodents fed with low-fat diets were demonstrated in previous studies. Fish oil is also reported to reduce body fat. In the current study, the effects of high fat and fish oil on HAM-RS2 feeding in rats were investigated. DESIGN AND METHODS: Rats were fed 0 or 27% (weight) HAM-RS2 with low (15% energy) or high fat (42% energy) diets that included 0 or 10% (energy) tuna oil to test the effect of HAM-RS2 in diet-induced obesity and effects of tuna oil. Data were analyzed as 2 × 2 × 2 factorial. RESULTS: Rats fed HAM-RS2 had decreased cecal contents pH, increased cecal and cecal contents weight, increased cecal contents acetate, propionate, and butyrate, increased GLP-1 and PYY, and decreased abdominal fat. However, high fat partially attenuated effects of HAM-RS2, but increased GLP-1 active. Dietary tuna oil had limited effects at concentration used. CONCLUSIONS: Results demonstrated that a high fat diet partially attenuates the response to HAM-RS2. The mechanism may center on reduced levels of cecal contents propionate and butyrate and reduced serum PYY. This study demonstrated that with consumption of high fat, HAM-RS2 produces fermentation but results in partial attenuation of effects.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Fermentação/efeitos dos fármacos , Amido/metabolismo , Zea mays/metabolismo , Gordura Abdominal/anatomia & histologia , Amilose/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...